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1. Introduction

In Ref. [1], a discrete-time state-space model is used to describe linear time-varying (LTV)
systems subject to initial disturbance. The concept of pseudo-modal parameters is proposed to
characterize dynamic properties of LTV systems. A subspace-based algorithm is developed to
identify the model and the pseudo-modal parameters. The algorithm is verified by computer
simulation. The goal of this study is to experimentally verify this algorithm. The study intends to
address the following: (1) to study the applicability of the algorithm to a real system that may
contain some imperfections such as a certain degree of nonlinearity and measurement noise, (2) to
study the factors that affect implementation of the algorithm, and (3) to find solutions to some
anticipated challenges such as selection of structural modes. An axially moving cantilever beam
apparatus was built as a test-bed for this study. The experiment identification was carried out.
This note reports the main findings of the study.
2. The identification algorithm

A state-space representation of an LTV system subject to initial disturbance is given by

_xðtÞ ¼ AðtÞxðtÞ; xð0Þ; yðtÞ ¼ CðtÞxðtÞ; (1)
see front matter r 2004 Elsevier Ltd. All rights reserved.
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where AðtÞ 2 Rnx�nx and CðtÞ 2 Rny�nx are referred to as the system matrix and the output matrix,
respectively. The integer nx represents the number of states or the order of model and ny

represents the number of outputs. The corresponding discrete-time state-space model of Eq. (1) is
given by

xðk þ 1Þ ¼ Gðk þ 1; kÞxðkÞ; xð0Þ; yðkÞ ¼ CðkÞxðkÞ; k ¼ 0; 1; . . . ;K � 1; (2)

where Gðk þ 1; kÞ is referred to as the state transition matrix and K is the last moment of the time
duration of interest. A similar transformation for the system is defined as

Ḡðk þ 1; kÞ ¼ Tðk þ 1ÞGðk þ 1; kÞT�1ðkÞ; C̄ðkÞ ¼ CðkÞT�1ðkÞ; (3)

where Ḡðk þ 1; kÞ and C̄ðkÞ are another realizations of the system. It is noted that, unlike the case
of LTI systems, Gðk þ 1; kÞ and Ḡðk þ 1; kÞ do not share the same eigenvalues because Tðk þ

1ÞaTðkÞ in general.
The pseudo-modal parameters are based on the eigenvalues of Gðk þ 1; kÞ: The eigendecom-

position of Gðk þ 1; kÞ is given as

Gðk þ 1; kÞ ¼ VðkÞKðkÞV�1ðkÞ; (4)

where VðkÞ and KðkÞ are the eigenvector matrix and eigenvalue matrix, respectively. Because the
elements of Gðk þ 1; kÞ are real, the complex eigenvalues occur in complex conjugate pairs. If the
ith eigenvalue liðkÞ is complex, then the following expression can be employed:

liðkÞ ¼ l�iþ1ðkÞ ¼ exp �ziðkÞoiðkÞtþ joiðkÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2i ðkÞ

q
t

� �
; (5)

where oiðkÞ ¼ 2pf iðkÞ and ziðkÞ are referred to as the ith pseudo-natural frequency (PNF) and
pseudo-damping ratio (PDR) at the moment k, respectively, j ¼

ffiffiffiffiffiffiffi
�1

p
; and t is the sampling time.

The pseudo-modal parameters are defined in analogy to the definition of modal parameters for
LTI systems.

The algorithm is based on an ensemble method that starts with forming a Hankel matrix using
N sets of response data from N experiments:

HðkÞ ¼

y1ðkÞ y2ðkÞ 
 
 
 yNðkÞ

y1ðk þ 1Þ y2ðk þ 1Þ 
 
 
 yNðk þ 1Þ

..

. ..
. . .

. ..
.

y1ðk þ M � 1Þ y2ðk þ M � 1Þ 
 
 
 yNðk þ M � 1Þ

2
66664

3
77775; (6)

where yjðkÞ denotes the response at the moment k from the jth experiment. Application of the
Singular Value Decomposition (SVD) to HðkÞ allows to extract the range space of the
observability matrix as

C̄ðkÞ ¼ CðkÞT�1ðkÞ ¼

C̄ðkÞ

C̄ðk þ 1ÞḠðk þ 1; kÞ

..

.

C̄ðk þ M � 1ÞḠðk þ M � 1; kÞ

2
66664

3
77775: (7)
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To extract the matrix Ḡðk þ 1; kÞ; a successive Hankel matrix Hðk þ 1Þ is formed using the
successive responses from the moment k þ 1 to the moment k þ M:

The defined pseudo-modal parameters cannot be obtained from the eigenvalues of the matrix
Ḡðk þ 1; kÞ: In Ref. [1], a matrix is defined as

~Gðk þ 1; kÞ ¼ TðkÞGðk þ 1; kÞT�1ðkÞ: (8)

Apparently the eigenvalues of ~Gðk þ 1; kÞ are the same as those of Gðk þ 1; kÞ: In general, the
matrix ~Gðk þ 1; kÞ cannot be directly obtained from the extracted range space of the observability
matrix. In Ref. [1], an approximate method was used to estimate ~Gðk þ 1; kÞ: Further studies have
shown that this method is sensitive to measurement noise. In this study, an alternative approach is
used. If C̄1ðkÞ and C̄2ðkÞ are formed by the first M � 1 block rows and the last M � 1 block rows
of C̄ðkÞ; respectively, the following relation exists:

Ĝðk þ 1; kÞ ¼ ½C̄1ðkÞ�
þC̄2ðkÞ ¼ TðkÞW

�1
1 W2Gðk þ 1; kÞT�1ðkÞ; (9)

where ð:Þþ denotes the Moore–Penrose pseudo-inverse and

W1 ¼
XM�2

i¼0

GT
ðk þ i; kÞCT

ðk þ iÞCðk þ iÞGðk þ i; kÞ;

W2 ¼
XM�2

i¼0

GT
ðk þ i; kÞCT

ðk þ iÞCðk þ 1þ iÞGðk þ 1þ i; k þ 1Þ:

If Gðk þ i; kÞ and Cðk þ iÞ are close to Gðk þ 1þ i; k þ 1Þ and Cðk þ 1þ iÞ; respectively, the
matrix Ĝðk þ 1; kÞ can be used to approximate ~Gðk þ 1; kÞ: Complex conjugate pairs of the
eigenvalues of Ĝðk þ 1; kÞ are used in Eq. (5) to find the approximate pseudo-natural frequency
and pseudo-damping ratio at the moment k, respectively.
3. Experiment identification

Fig. 1 shows the experimental system. The beam is driven by a DC motor through a belt-pulley
set and a pinion-rack set. The DC motor, manufactured by DUMORE, is a 12V permanent
magnet DC gearhead motor. The gear ratio is 13:1. The motor no-load speed is 180 rpm at 1.5A.
The transmission ratio of the belt-pulley set is 5.25:1. A potentiometer is attached to the pinion
shaft to measure the angular position of the pinion shaft, and thus the linear position of the beam.
The beam is made of 6061-T6 aluminum alloy. The cross-sectional dimension of the beam is
3.175mm (thickness) � 50.8mm (width). The length of the beam can vary from 0.66 to 1.09m.
The beam is guided through a slot made of Teflon. The clearance of the slot is properly chosen to
emulate as close as possible a fixed end boundary condition. The lateral vibration of the beam is
measured by a strain gauge sensor and two accelerometers (B & K 4393V). The strain gauge
sensor is a full Wheatstone bridge and is located near the clamp with the beam fully retracted.
Two accelerometers are placed at the tip and the middle of the beam, respectively. A 4-channel
charge amplifier (B & K Nexus2692) is used to condition accelerometer signals. An unregulated
DC power supplier and a servo linear amplifier were built in house. A Pentium III personal
computer is used for control. The data acquisition (DAQ) board used is PCI-MIO-16E-4 by
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Fig. 1. Experimental system.

Table 1

Modal parameters of the first four modes for the fixed-length beams

Beam length 0.66 (m) 1.09 (m)

Parameters Experimental Analytical Experimental Analytical

f 1 (Hz)/z1 4.941/1.092E–2 5.958/NA 1.949/1.767E–2 2.185/NA

f 2 (Hz)/z2 31.55/1.214E–2 37.34/NA 12.37/6.308E–3 13.69/NA

f 3 (Hz)/z3 88.55/8.709E–3 104.6/NA 34.98/5.836E–3 38.33/NA

f 4 (Hz)=z4 120.0/5.070E–4 204.8/NA 68.44/7.316E–3 75.12/NA
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National Instruments. LabVIEW of National Instruments is used to interface with the DAQ
board.

The details of the identification results can be found in Ref. [2]. In what follows, identification
of the pseudo-natural frequencies is reported. As a preliminary study, the modal parameters of the
fixed-length beams were determined. With the beam length fixed, free responses of the beam were
produced by tapping the beam at various locations. The natural frequencies and damping ratios
were estimated using a subspace-based identification method [3]. Table 1 gives a comparison of
the experimental and analytical values. For the natural frequencies, the experimental values are
lower than the analytical ones. This can be attributed to the fact that the beam does not have an
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ideal fixed-end condition because of the clearance needed at the guiding slot. The damping ratios
are low as it is only caused by the internal damping of the material and the air drag. The test also
indicated that the modes higher than the fourth order are hardly excited out by an impact.

To generate an ensemble of free response data, it is important that the beam be engaged in the
same axial motion for each experiment. Two motion scenarios were considered, namely, Scenario
A: extension and Scenario B: retraction. Each motion scenario was conducted in a short duration
denoted as fast motion and in a long duration denoted as slow motion, respectively. Therefore,
four cases were considered, i.e., slow extension denoted as SA, fast extension denoted as FA, slow
retraction denoted as SB, and fast retraction denoted as FB. A two-step control strategy was
devised to command the motor motion [2]. A sampling frequency of 1000 samples per second was
used. A LabVIEW program was written to execute the motor control and collect the sensor
signals.

It is critical to generate a free response that is rich in the system dynamics and independent of
the responses from other experiments. A great effort was made to ensure this. The beam was
excited by tapping it at different locations with different intensities. The beam started to move
after an impact was applied to ensure free response. After being acquired into the computer, the
data were displayed and visually inspected first. All the data used for identification were forced to
be zero-mean. Numerous experiments were conducted. In what follows, 40 experiments were used
in each of four cases, i.e., N ¼ 40:

After a Hankel matrix is formed using N sets of responses from k to k þ M � 1; an SVD is
conducted,

HðkÞ ¼ UðkÞSðkÞVTðkÞ; (10)

where UðkÞ 2 RnyM�nyM and VðkÞ 2 RN�N are left and right orthogonal singular vector matrices,
respectively, and SðkÞ 2 RnyM�N is diagonal and contains singular values arranged in a descending
order. After a model order nx is chosen, the first nx columns of UðkÞ are used as the range space of
the observability matrix. In the case of time-invariant systems, the magnitudes of singular values
are used to determine a proper order for an identification model. In the case of time-varying
systems, singular values vary from moment to moment. The study showed that the responses in
the beginning of motion contain more modes than those in the later period of motion. The
responses from the fast motion are richer in modal information than those from the slow motion.
Such behaviors are due to the nature of free responses. The experiments also revealed that, when
the beam is retracting, the measured signals appear to be diverging. As a result, the responses
under retraction sustain a longer period and contain more modes than those under extension. This
can be explained by the energetics of translating media with a varying length. In Ref. [4], it is
proved that the energy of vibration decreases and increases monotonically during extension and
retraction, respectively.

When the eigendecomposition is conducted on the identified matrix Ĝðk þ 1; kÞ; real
eigenvalues may appear due to system nonlinearity and/or measurement noise. As the pseudo-
modal parameters are defined using pairs of complex eigenvalues, real eigenvalues are discarded.
If there are nr real eigenvalues, the number of identified PNFs is nf ¼ ðnx � nrÞ=2:

It is necessary to overparameterize a model in order to capture the dynamics of the system. As a
result of overparameterization, an identified transition matrix Ĝðk þ 1; kÞ contains two types of
modes: structural modes and computational modes. How to distinguish the structural modes from
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the computational modes poses a challenge for time-varying systems. For time-invariant systems,
several methods are available such as the balanced realization technique [5] and the mode singular
value [6]. These methods cannot be directly applied to time-varying systems. In this study, the
problem is treated as how to group the values f iðkÞ; i.e., what is the next f iðk þ 1Þ? A natural
choice of grouping is to sort all the identified PNFs at each moment according to their
magnitudes. Fig. 2 shows the first four PNFs sorted in an ascending order. They were identified
using the responses of case FB with the model order of nx ¼ 14 and the block row number of
M ¼ 140:

It can be seen that the first group of the values belongs to the first PNF. The second group of
the values belongs to the second PNF for almost the entire duration of motion except a short
period towards the end. The third group of values start to represent the third PNF. However,
around the middle of the motion duration, the values oscillate between the second PNF and the
third PNF. The fourth group of values is even less sensible. Sorting the identified PNFs according
to their magnitudes at each moment fails because of the presence of the spurious frequencies
associated with the computational modes. In the beginning of motion, the structural modes
dominate the signals and the spurious frequencies are likely to be large values because the noise
tends to be of high frequencies. Towards the end of motion, the higher structural modes become
less dominant in the signals and more spurious frequencies appear in the lower frequency region.

In this study, a method of grouping the identified PNFs is developed. The method is based on
an assumption that a system PNF does not change significantly in a short time. To explain the
method, the following notations are defined: f iðkÞ denotes the ith identified PNF sorted in an
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Fig. 2. Sorted PNFs from scenario FB: —, f 1ðkÞ; :: . . . ; f 2ðkÞ; -.-.-., f 3ðkÞ; - - -, f 4ðkÞ:
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ascending order; f s
i ðkÞ the ith selected PNF; and f a

i ðkÞ a moving mean of the selected PNFs from
k � M1 þ 1 to k, i.e:;

f a
i ðkÞ ¼ mean½ f s

i ðk � M1 þ 1Þ : f s
i ðkÞ� ¼

1

M1

Xk

j¼k�M1þ1

f s
i ðjÞ; (11)

where M1 is a prescribed number. With f a
i ðkÞ; the ith selected PNF at the next moment k þ 1 or

f s
i ðk þ 1Þ is selected from f iðk þ 1Þ; i ¼ 1; 2; . . . ; nf ; to be the one that is closest to f a

i ðkÞ: To start
the process of selection, let f a

i ð0Þ ¼ f ið0Þ; i.e., the values ranked by magnitude at the first moment
are chosen to be the mean values. For koM1 � 1; k is used as M1; i.e., the mean values are
calculated using the selected values available.

Fig. 3 shows the first four PNFs selected from the results partly presented in Fig. 2. The selected
results were obtained using M1 ¼ 10: From the figure, it can be seen that the first three sets of the
selected values represent the first, second, and third PNFs, respectively. The fourth set of the
selected values represents the fourth natural frequency in the beginning and becomes very
irregular towards the end. This indicates that the first three PNFs were successfully identified
while the fourth PNF was not completely identified for the entire duration of motion.

Fig. 4 shows the first three PNFs identified using the responses of case FA and sorted by
magnitude. The identification was conducted with the model order of nx ¼ 14 and the block row
number of M ¼ 140: It can be seen that the second and third sets of the values fluctuate
significantly. Fig. 5 shows the first three groups of the selected values. The selected results were
obtained using M1 ¼ 10: It can be seen that the first three PNFs were successfully found except
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Fig. 3. Selected PNFs from scenario FB: —, f s
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that towards the end of motion, the results become less satisfactory. The above results indicate
that the proposed method can properly group the identified PNFs. Therefore, the method is used
in the following discussion.

With f s
i ðkÞ; a quantity that measures variation of the selected values is defined as

si ¼
1

K

XK�1

i¼0

siðkÞ; siðkÞ ¼ std½ f s
i ðk � M2 þ 1Þ : f s

i ðkÞ�; (12)

where std½ f s
i ðk � M2 þ 1Þ : f s

i ðkÞ� represents a moving standard deviation of the ith selected PNF
from k � M2 þ 1 to k and M2 is a prescribed number. It is reasonable to assert that if the ith
selected PNF has a small value of si; it is more likely to represent a structural mode. In addition,
the mean PNFs in the beginning and the end of motion are defined as

f a
ib ¼ f a

i ðM1 � 1Þ and f a
ie ¼ f a

i ðK � 1Þ;

respectively. Comparison of the values of f a
ib and f a

ie with the corresponding values presented in
Table 1 reveals whether the identified PNFs follow the overall varying trends.

Table 2 summarizes the identification results using the responses of case FA with M ¼ 50:
From the table, one can see that with nx ¼ 6; identification of the first PNF is possible and with
nx ¼ 16; identification of the first three PNFs is possible for the entire duration of motion. The
results with M ¼ 100 are given in Table 3. With an increase of the block row number M, the first
two groups of the selected values become more consistent, indicated by smaller mean standard
deviations. The results for the third group of the selected values seem difficult to explain at first
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Table 2

The identification results for FA. M ¼ 50; M1 ¼ M2 ¼ 20

nx f a
1b=f a

1e (Hz) s1 f a
2b=f a

2e (Hz) s2 f a
3b=f a

3e (Hz) s3 f a
4b=f a

4e (Hz) s4

6 5.292/2.940 0.6451 NA NA NA NA NA NA

10 5.153/2.118 0.4862 32.30/35.57 1.608 87.35/11.54 8.003 NA NA

14 4.936/1.845 0.3397 32.49/12.77 1.264 91.68/34.79 2.996 78.81/62.37 18.71

16 4.824/1.871 0.3470 32.49/12.60 1.127 91.97/34.45 1.082 89.16/65.43 10.29
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Fig. 5. Selected PNFs from scenario FA: —, f s
1ðkÞ; :: . . . ; f s

2ðkÞ; -.-.-., f s
3ðkÞ:
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glance. The identified values for f a
3e are sensible when nxX10: However, the values for f a

3b are
inconsistent, for example, in the cases of nx ¼ 14 and nx ¼ 16: Considering f a

4b in the case of
nx ¼ 16; one can see that a more proper value was used as the fourth group of the selected values.
This indicates a limitation of the proposed selection method as it starts with the values sorted by
magnitude at the first moment. In this case, the third smallest value is spurious. This problem can
be overcome if the selection starts with a set of known values, such as those given in Table 1.

Table 4 lists the identification results using the responses of case FB. With nxX14; the first two
PNFs were identified. With nxX16; the first three PNFs were identified. Identification with
various values of the block number M was conducted. The results indicate that a proper selection
of the block number M is important. In general, a larger M implies that the extracted subspace is
valid over a longer time interval, thus contains richer modal information and yields more
consistent results.

The identification results using the responses of case SA were not satisfactory. The algorithm
was able to identify the first PNF for the duration of motion. For the second and third PNFs, the
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Table 3

The identification results for FA. M ¼ 100; M1 ¼ M2 ¼ 20

nx f a
1b=f a

1e (Hz) s1 f a
2b=f a

2e (Hz) s2 f a
3b=f a

3e (Hz) s3 f a
4b=f a

4e (Hz) s4

6 4.980/2.378 0.0592 32.32/27.84 3.230 NA NA NA NA

10 4.953/2.028 0.0585 32.23/12.21 0.9368 80.95/35.55 7.938 NA NA

14 5.117/2.006 0.0666 32.28/12.51 0.5989 91.20/35.01 1.295 86.60/63.62 8.047

16 5.125/2.007 0.0675 32.37/12.43 0.5420 55.08/35.19 2.151 89.99/64.66 7.433

Table 4

The identification results for FB. M ¼ 100; M1 ¼ M2 ¼ 20

nx f a
1b=f a

1e (Hz) s1 f a
2b=f a

2e (Hz) s2 f a
3b=f a

3e (Hz) s3 f a
4b=f a

4e (Hz) s4

6 7.626/29.44 0.5394 33.57/4.691 1.138 NA NA NA NA

10 12.20/31.61 0.3662 34.75/56.59 0.7541 68.41/4.692 2.841 108.3/79.88 7.312

14 2.381/31.26 0.2519 12.44/83.94 0.7411 34.94/48.43 5.282 68.84/4.740 3.067

16 2.363/4.734 0.0483 12.45/31.80 0.1956 35.02/84.21 0.5314 68.84/68.41 4.085
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algorithm was able to identify them in the beginning of motion and failed to do so towards the
end of motion. This is due to the fact that high modes become too weak to be detected when the
duration of motion is long. The identification results using the responses of case SB were better
than those using the responses of case SA and worse than those using the responses of case FB.
Identification using different numbers of experiments was also conducted. The study indicates
that it is possible to identify the first three PNFs using fewer number of experiments. When the
number of experiments is small, the quality of the response from each experiment becomes more
critical. A response with a high quality should be rich in modal information and independent of
the other responses. More studies were carried out such as the use of one or two outputs, the use
of different number M1 in selection of the structural PNFs, etc. Due to the limited paper length,
they are not reported here.
4. Conclusions

The following conclusions can be drawn from the study: The algorithm is capable of identifying
the first three pseudo-natural frequencies. The study has indicated that the newly defined
approximate transition matrix is less sensitive to measurement noise than the one defined in Ref.
[1]. A method to select the structural pseudo-natural frequencies from the identified values has
been developed. The identification results have indicated that the proposed method is able to
properly group the structural frequencies. The study has revealed that the proper implementation
of the algorithm depends on several factors. To generate an ensemble of free responses from
multiple experiments, the beam must be in the same axial motion for each experiment. The impact
used in each experiment must be distinct in order to produce responses independent of each other.
The model must be properly overparameterized to capture all the excited structural modes. The
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measured responses must be detrended to have zero-mean. The larger block row number in
general gives a better result. The more the experiments are used in forming the data matrix, the
more consistent the identification results become.

The experimental study has also confirmed some interesting behaviors of the axially moving
cantilever beams. For example the energy of vibration decreases and increases monotonically
during extension and retraction, respectively. Such a behavior has an impact on identification. It
has been observed that the responses under retraction motion are richer in modal information and
sustain a longer period than those under extension motion. Therefore more modes can be
identified using the responses under retraction motion than using those under extension motion.

The study has revealed some limitations of the algorithm. As free responses decay quickly, the
quality of identification deteriorates with an increase of time if the system response is not
persistently exciting as the case of an axial extension. The results of identification of the pseudo-
damping ratios are not acceptable mainly due to two reasons. First, the eigenvalues of the matrix
Ĝðk þ 1; kÞ defined in Eq. (9) do not give a close approximation to the pseudo-damping ratios.
Determination of the exact matrix ~Gðk þ 1; kÞ defined in Eq. (8) by the subspace extraction is not
possible. Second, because the damping level of the system is low and varying, the identified
damping ratios are very sensitive to measurement noise. The study has been limited to two motion
scenarios: extension and retraction. The future study will test the algorithm against more
complicated motion patterns such as parabolic and periodic root motions.
References

[1] K. Liu, Identification of linear time-varying systems, Journal of Sound and Vibration 204 (1997) 487–500.

[2] L. Deng, Modeling and Identification of an Axially-moving Cantilever Beam, MSc Engineering Thesis, Lakehead

University, Thunder Bay, ON, 2002.

[3] K. Liu, Modal parameter estimation using the state space method, Journal of Sound and Vibration 197 (1996)

387–402.

[4] W.D. Zhu, J. Ni, Energetics and stability of translating media with an arbitrarily varying length, Journal of

Vibration and Acoustics 122 (2000) 295–304.

[5] K. Liu, D.W. Miller, Time domain state space identification of structural systems, Journal of Dynamic Systems,

Measurement, and Control 117 (1995) 608–618.

[6] J. Juang, Applied System Identification, Prentice-Hall, Englewood Cliffs, NJ, 1994.


	Experimental verification of an algorithm for identification �of linear time-varying systems
	Introduction
	The identification algorithm
	Experiment identification
	Conclusions
	References


